

"ENGENHARIA ALÉM DO TRADICIONAL E O IMPACTO DA INDÚSTRIA 4.0"

24 a 26 de setembro de 2018 no campus Viçosa da UFV Departamento de Engenharia de Produção e Mecânica – DEP Universidade Federal de Viçosa – UFV

PROJETO DE UM SISTEMA DE SUSPENSÃO PARA UM VEÍCULO TIPO FÓRMULA SAE ELÉTRICO

Naelton Elias de Souza Cabral, Mateus Brener Reis de Sá, Lucas Vinicius de Bem Juliane, Lucas Benini

Universidade Federal de Viçosa, Departamento de Engenharia de Produção e Mecânica Avenida Peter Henry Rolfs, Campus Universitário - 36570-900 - Viçosa - Minas Gerias naelton.cabral@ufv.br, mateus.sa@ufv.br, lucas.juliane@ufv.br lucas.benini@ufv.br

Resumo: A competição Fórmula SAE *Student* é organizada pela SAE (*Society of Automotive Engineers*) desde 1978 com o objetivo de enriquecer a formação dos estudantes de engenharia, fazendo-os trabalhar na prática conceitos aprendidos em sala. O objetivo do presente trabalho é detalhar o projeto do sistema de suspensão do protótipo GX01E da Equipe Fórmula UFVolts Majorados através da metodologia de projeto proposta por *Project Management Institute* (2009). Com os resultados atingidos foi possível estruturar o projeto de suspensão, traçando o caminho crítico da atividade do mesmo e criando-se um cronograma de tarefas. O trabalho foi de suma importância para a equipe, uma vez que possibilitou a criação de um manual para o procedimento de projeto do sistema de suspensão, e implicará na economia de tempo nos projetos dos próximos protótipos.

Palavras-chave: Gerência de projeto, suspensão, Fórmula SAE, UFVolts Majorados

1. INTRODUÇÃO

A competição Fórmula SAE *Student*, uma das maiores do mundo entre estudantes de engenharia, tem por objetivo avaliar o projeto e a construção de veículos tipo Fórmula projetados por equipes de estudantes universitários. A concepção do protótipo baseia-se no dimensionamento de diversos subsistemas e, entre eles, o de suspensão.

O sistema de suspensão é o responsável por garantir a estabilidade do veículo, tendo por objetivo absorver as irregularidades do solo e compensar a transferência de carga. Os principais tipos de suspensão são *hotchkiss*, *four-link*, *de dion*, *trailing arm*, *multi-link*, *MacPherson* e *short long arm*, sendo esta última a utilizada no veículo.

O projeto de suspensão de um veículo Fórmula SAE é imprescindível para o bom funcionamento do carro, afetando diretamente na dirigibilidade e segurança do piloto. Além disso, o mesmo engloba diversos setores, promovendo a integração entre os membros da equipe. Por ser considerado um sistema de alta complexidade e suma importância para o desempenho veicular, o planejamento e detalhamento correto do projeto influenciam diretamente em uma construção coerente do protótipo e, posteriormente, no desempenho satisfatório do carro na competição.

O presente trabalho tem como objetivo auxiliar na elaboração de um escopo de projeto detalhado do sistema de suspensão através da metodologia de gerenciamento de projeto proposta por *Project Management Institute* (2009) para a equipe Fórmula UFVolts Majorados da Universidade Federal de Viçosa, seguindo as normas do regulamento *Formula SAE Rules* 2017/2018.

Como objetivo específico, visa-se criar uma base sólida do procedimento de projeto para os futuros membros da equipe e amparar durante a construção física do Protótipo GX-01E, que participará da competição Fórmula SAE Brasil 2018.

2. METODOLOGIA

No desdobramento deste trabalho foi aplicada a metodologia de gerência de projeto encontrada em GUIA PMBoK (2013), partindo do desenvolvimento de cada uma das tarefas relacionadas ao projeto do sistema de suspensão e por meio da avaliação das competências destas tarefas. Não obstante, o *software* GanttProject[®] foi utilizado para a alocação atividades competentes.

O desenvolvimento do trabalho seguiu o seguinte desdobramento:

- 1) Avaliação das partes interessadas no objeto de estudo e sua relevância;
- 2) Definição dos requisitos do projeto de suspensão;
- 3) Criação do escopo do projeto;
- 4) Elaboração do cronograma das atividades com atribuição de recursos.

3. RESULTADOS

3.1 Partes interessadas no projeto e suas perspectivas

As partes interessadas do projeto do sistema de suspensão para um veículo tipo Fórmula SAE incluem desde instituições e organizações até estudantes de graduação. Serão apresentadas na Tab. 1 as principais partes interessadas do projeto, discriminando seus respectivos interesses, graus de poder e formas de tratamento.

Tabela 1 – Partes interessadas e suas descrições.

Parte interessada	Grau de interesse	Interesse	Grau de poder	Tratamento
Patrocinadores	2	Auxiliar com recursos computacionais de forma a garantir validade do projeto	5	Manter informado
Departamento de Engenharia de Produção e Mecânica	3	Promover a aplicação de conhecimento de engenharia através do projeto	5	Gerenciar com atenção
Departamento de Engenharia Elétrica	3	Promover a aplicação de conhecimento de engenharia através do projeto	2	Manter informado
Equipe UFVolts	5	Projetar e construir um veículo tipo Fórmula e desenvolver o trabalho em equipe	5	Gerenciar com atenção
Estudantes do Centro de Ciências Exatas	4	Colocar o conhecimento em prática, realizando um projeto de alta complexidade de forma obter destaque no âmbito acadêmico e profissional.	1	Manter informado
SAE	5	Promover e fomentar a participação das universidades em competições para avaliação dos projetos de carros fórmula	5	Gerenciar com atenção

Interesse: nível de interesse (1 - Pouco Interessado e 5 – Muito interessado).

Grau de poder: nível de autoridade (1 – Baixo nível de poder e 5 – alto nível de poder).

Tratamento: Manter satisfeito; Gerenciar com atenção; Monitorar; Manter informado.

3.2 Requisitos do projeto

Os requisitos do projeto do sistema de suspensão devem atender a áreas distintas, desde o alinhamento com os regulamentos vigentes exigidos pela SAE até o prazo de entrega final. Tal fato deve-se a diversos fatores, relacionados à exigência de atender às solicitações da entidade, constantes no regulamento *Formula SAE Rules 2017/2018*. Além disso, o projeto deve seguir o prazo estipulado em consequência de documentos e ofícios solicitados previamente pela organização e que devem ser entregues dois meses antes da competição. Os requisitos do projeto, a classificação e a parte interessada relacionada estão apresentados na Tab. 2:

Tabela 2 –	Requisitos	detalhados	do	projeto.

ID	Descrição do requisito	Classificação do requisito	Parte interessada
	Atender ao regulamento FSAE	5	SAE
	Possuir dois amortecedores na dianteira e traseira	3	Equipe
	Amortecedores devem possuir curso vertical de 50,8 mm	5	SAE
	Ser de baixo peso	3	Equipe
	Suportar o peso do carro	5	Equipe
	Deslocar a massa suspensa	2	Equipe
	Deslocar a massa não-suspensa	2	Equipe
	Pontos de fixação nos nós do chassi	4	Equipe
	Finalizar projeto até final de junho 2018	5	Equipe

3.3 Escopo do projeto

O escopo do projeto de suspensão inclui a descrição do produto esperado como resultado pelas partes interessadas. Além disso, são definidas as entregas que devem ser realizadas para a conclusão do projeto e apresenta-se a estrutura hierárquica das atividades que serão realizadas. As fronteiras e restrições também são descriminadas neste item, de forma a proporcionar uma visão do contorno do projeto. Por fim, são apresentadas as premissas e as especificações técnicas que o produto final deve possuir.

3.3.1 Descrição do escopo do produto do projeto

Um veículo tipo Fórmula possui diversos componentes que, dentre eles, pode-se citar o sistema de suspensão. Este sistema tem como objetivo absorver todas as cargas provenientes no solo, gerando mais conforto para o piloto. O projeto do sistema terá o foco apenas no projeto conceitual e desenvolvendo os subcomponentes (manga de eixo, amortecedor e braços de suspensão).

De forma geral, serão desenvolvidos todos os cálculos e tomadas de decisões visando dimensionar um sistema de suspensão otimizado para atender aos interesses da Equipe UFVolts. Para que o projeto seja finalizado, parâmetros de dinâmica veicular e de dimensionamento da suspensão deverão ser analisados, como por exemplo as foças atuantes em cada um dos componentes, afim de gerar dados suficientes para uma escolha adequada e conveniente do sistema. Para isso deverá ser feito o dimensionamento dos seguintes itens: ângulo de cáster, ângulo do pino mestre, *scrub radius*, ângulo de câmber, geometria de *Ackermann*, bitola, entre eixos, posicionamento do centro de gravidade e ângulo de abertura dos braços de suspensão.

3.3.2 Entregas do projeto

Nessa seção serão definidas as entregas de projeto, que indicam quais resultados ou itens devem ser retornados, de forma a considerar a atividade como finalizada. Como este trabalho não inclui a

fase de construção do protótipo, os resultados serão apenas documentos ou informações de dimensionamento do sistema de suspensão.

Dessa forma, os itens classificados como entregas do projeto estão indicados a seguir:

- 1) Preparação:
 - i) Leitura do regulamento da competição SAE;
 - ii) Leitura da bibliografia base para o projeto da suspensão;
 - iii) Familiarização com os softwares de projeto e simulação utilizados.
- 2) Projeto das mangas de eixo:
 - i) Escolha das rodas e pneus;
 - ii) Cálculo dos ângulos de Pino Mestre e Cáster e do Scrub Radius;
 - iii) Projeto das mangas no software SolidWorks[®];
 - iv) Simulação estrutural das mangas no software ANSYS®;
- 3) Escolha dos amortecedores;
- 4) Definição da geometria dos braços de suspensão;
- 5) Simulação da suspensão no software ADAMS Car®;
- 6) Projeto final de suspensão.

3.3.3 Estrutura analítica de projeto

A Estrutura Analítica de Projeto (EAP) organiza as atividades que devem ser realizadas em forma de estrutura hierárquica. Cada pacote é considerado uma tarefa e o conjunto das tarefas resulta no projeto em si. Na maioria das vezes os pacotes de tarefas são divididos em tarefas menores que os compõe.

O objetivo da EAP é apresentar de forma gráfica toda a extensão do projeto e suas tarefas. Essa estrutura é utilizada como ferramenta para a subdivisão dos pacotes e também do planejamento de custos do projeto. A EAP do projeto de suspensão de um veículo Fórmula SAE é indicada na Fig. 1.

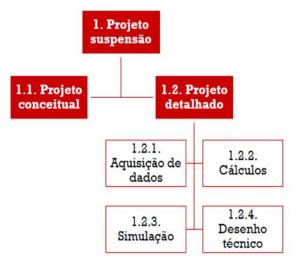


Figura 1 – Estrutura Analítica de Projeto (EAP).

O dicionário da EAP apresenta em forma de tópicos os pacotes de atividades que foram definidos na estrutura analítica e são descritas informações acerca dos pacotes. O dicionário da EAP para o projeto é indicado a seguir:

- 1. Projeto suspensão:
 - 1.1. Projeto conceitual: realizar as escolhas iniciais para definição de geometria;
 - 1.2. Projeto detalhado: definição da geometria final do protótipo:
 - i) Aquisição de dados: obtenção das características físicas dos componentes;
 - ii) Cálculos: definição de dados de entrada para as simulações;
 - iii) Simulação: verificação e otimização dos dados do protótipo;

iv) Desenho técnico: realização do desenho do protótipo.

3.3.4 Fronteiras de trabalho

O projeto está limitado pelo processo de elaboração detalhada do dimensionamento e escolha do material do sistema de suspensão de um veículo tipo Fórmula SAE. Ou seja, não estão inclusos a produção do produto final, nem como a arrecadação de recursos para tal.

3.3.5 Restrições de projeto

Devido ao fato desta parte tratar do projeto conceitual, não se observam grandes restrições, estando estas restritas ao escopo geral da equipe e adequação aos critérios do regulamento. A Tab. 3 apresenta as principais restrições do projeto.

Tabela 3 – Restrições do projeto.

Item	Descrição
A	Orçamento predefinido de até R\$ 6.000,00
В	Data de entrega do projeto detalhado para 07/07/2018
С	O projeto deve atender aos requisitos do regulamento SAE 2018

3.3.6 Premissas do projeto

O guia PMBoK descreve premissas como fatores que estão associados ao escopo do projeto e que são tomados como verídicos no planejamento do mesmo, sem necessidade de comprovação. A Tab. 4 apresenta as premissas do projeto de suspensão e os respectivos riscos relacionados.

Tabela 4 – Premissas do projeto.

Tuocia + Tremissus do projeto.		
Premissa	Descrição do risco	
Escolha de componentes que atendam aos requisitos do projeto e ao orçamento	Devido às circunstâncias dos demais projetos dos subsistemas do veículo, é possível que componentes de baixo custo não atendam aos requisitos, reduzindo a qualidade do sistema, mas não colocará em risco a entrega do projeto.	
Domínio do software de simulação	Fator mais hostil ao projeto, visto que o domínio do <i>software</i> de simulação é uma etapa fundamental para dimensionar e finalizar o projeto do sistema de suspensão. O não domínio deste poderá atrasar ou até mesmo inviabilizar a entrega do projeto	

3.4 Cronograma das atividades e atribuição de recursos

Na Tab. 5 podem-se observar as tarefas pertinentes ao projeto de suspensão do veículo, juntamente com suas atividades predecessoras, pessoal necessário para cumprimento da tarefa e seu tempo de duração.

Tabela 5 – Tarefas e suas respectivas predecessoras.

Nome da tarefa	Predecessoras	Pessoal	Duração
Ler o regulamento		2	4 dias
Selecionar o tipo de suspensão	Ler o regulamento	2	2 dias
Escolher a roda	Ler o regulamento	1	1 dia
Escolher o pneu	Ler o regulamento; Escolher a roda	1	1 dia
Selecionar o amortecedor	Ler o regulamento; Selecionar o tipo de suspensão	1	7 dias

Definir o acionamento do amortecedor	Ler o regulamento; Selecionar o tipo de suspensão; Selecionar o amortecedor	2	7 dias
Estimar peso do carro	Escolher a roda; Escolher o pneu; Selecionar o amortecedor	2	2 dias
Estimar distribuição de massa	Estimar peso do carro	2	5 dias
Aferir constante de mola	Selecionar o amortecedor	1	1 dia
Aferir rigidez do pneu	Escolher o pneu	1	1 dia
Estimar posição do CG	Estimar peso do carro; Estimar distribuição de massa	2	1 dia
Obter slip angle	Escolher o pneu	1	1 dia
Obter coeficiente de atrito	Escolher o pneu	1	1 dia
Definir entre eixos	Estimar distribuição de massa	1	1 dia
Calcular transferência de carga	Estimar distribuição de massa; Estimar posição do CG	2	3 dias
Calcular SSF	Estimar posição do CG	1	1 dia
Calcular bitola	Calcular SSF	1	1 dia
Calcular installation ratio	Definir o acionamento do amortecedor; Escolher o pneu; Obter curso vertical da roda	2	7 dias
Calcular dimensões dos braços	Calcular transferência de carga; Calcular bitola	2	2 dias
Calcular instant center e roll center	Estimar posição do CG ; Calcular dimensões dos braços	3	2 dias
Obter geometria Ackernann	Definir entre eixos; Calcular bitola	3	14 dias
Aferir variação de cambagem	Calcular transferência de carga; Calcular bitola ; Calcular dimensões dos braços	2	10 dias
Determinar rolagem da carroceria	Calcular instant center e roll center	2	3 dias
Simular esforços	Calcular dimensões dos braços	3	14 dias
Obter curso vertical da roda	Aferir constante de mola	1	7 dias
Desenhar rodas e pneus	Escolher o pneu	1	2 dias
Desenhar amortecedor	Selecionar o amortecedor	1	1 dia
Desenhar manga de eixo	Obter geometria Ackernann; Simular esforços	1	5 dias
Desenhar push rod	Definir o acionamento do amortecedor	1	1 dia
Desenhar balancim	Calcular installation ratio	2	7 dias
Desenhar braços	Simular esforços	1	2 dias
Desenhar juntas	Desenhar braços	1	6 dias
Desenhar rod end	Desenhar juntas	1	1 dia
Desenhar barra estabilizadora	Desenhar balancim	2	14 dias

Tendo estas informações, fazemos uso do *software* GanttProject® para estruturação completa das atividades. Tal ferramenta foi escolhida por permitir a hierarquização de tarefas e dependências, geração de gráficos de Gantt e de carga de recursos, relatórios de PDF e HTML além de importação e exportação de projetos. Na Fig. 2 pode-se encontrar a lista de tarefas, sua duração e estruturação no tempo geradas pelo *software* GanttProject®.

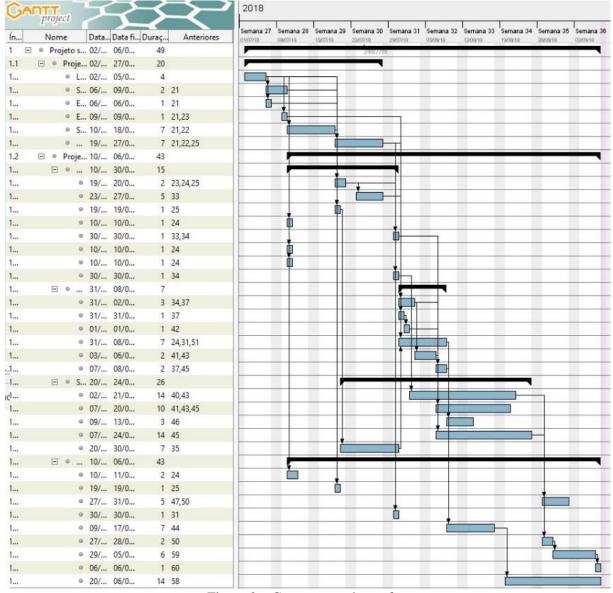


Figura 2 – Cronograma de tarefas.

3.5 DISCUSSÃO

Com o desenvolvimento deste trabalho foi possível constatar que contando com três membros envolvidos no projeto e 8 horas de trabalho diárias são necessários 49 dias para a conclusão do projeto. Além disso gerou-se um guia para o projeto de suspensão com sequenciamento de tarefas que será incorporado ao setor da equipe como ferramenta necessária de gestão de conhecimento.

Não obstante, através do *software* GanttProject® chegou-se no caminho crítico do projeto de suspensão o qual pode ser observado na Fig. 3, ou seja, a sequência de tarefas que, caso alguma atrase, gerará um atraso no projeto como um todo. Podemos observar por exemplo que sem a realização das atividades de leitura do regulamento e seleção do tipo de suspensão nenhuma outra atividade do projeto poderia ser realizada, e que sem aferir a constante de mola do amortecedor e a rigidez do pneu não poderíamos executar a simulação da suspensão.

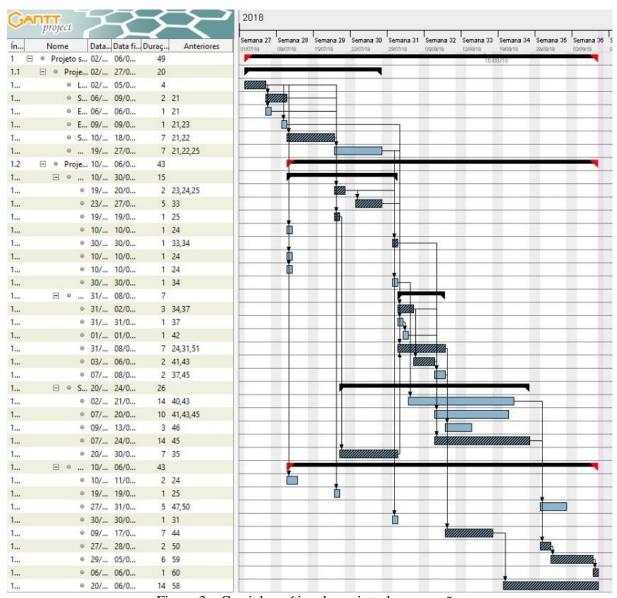


Figura 3 – Caminho crítico do projeto de suspensão.

4. CONCLUSÕES

Este trabalho apresentou o desdobramento do projeto do sistema de suspensão da Equipe Fórmula UFVolts Majorados baseada na metodologia de projeto proposta por Project Management Institute (2009). Com os resultados alcançados neste trabalho, conclui-se que:

- Tornou-se possível uma grande economia de tempo e recursos para a equipe Fórmula UFVolts Majorados, reduzindo o tempo necessário na concepção do sistema de suspensão de um semestre para menos de dois meses;
- A gerência correta dos projetos representa benefícios incomparáveis em termos organizacionais, antevendo problemas, identificando possíveis desdobramentos e baseando as tomadas de decisões, traduzindo-se em grandes ganhos na busca pela excelência de projeto.

Em trabalhos futuros sugere-se mensurar as influências dos demais sistemas mecânicos no projeto do sistema de suspensão.

5. REFERÊNCIAS

GUIA PMBoK. "Um guia do conhecimento para gerência de projeto". 5ª ed. Project Management Institute, Pennsylvania, 2013.

KERZNER, H. "Gestão de projetos: as melhores práticas". 2ª edição. Porto Alegre: Bookman, 2006.